skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shinde, Gaurav"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Integrating multimodal data such as RGB and LiDAR from multiple views significantly increases computational and communication demands, which can be challenging for resource-constrained autonomous agents while meeting the time-critical deadlines required for various mission-critical applications. To address this challenge, we propose CoOpTex, a collaborative task execution framework designed for cooperative perception in distributed autonomous systems (DAS). CoOpTex contribution is twofold: (a) CoOpTex fuses multiview RGB images to create a panoramic camera view for 2D object detection and utilizes 360° LiDAR for 3D object detection, improving accuracy with a lightweight Graph Neural Network (GNN) that integrates object coordinates from both perspectives, (b) To optimize task execution and meet the deadline, CoOpTex dynamically offloads computationally intensive image stitching tasks to auxiliary devices when available and adjusts frame capture rates for RGB frames based on device mobility and processing capabilities. We implement CoOpTex in real-time on static and mobile heterogeneous autonomous agents, which helps to significantly reduce deadline violations by 100% while improving frame rates for 2D detection by 2.2 times in stationary and 2 times in mobile conditions, demonstrating its effectiveness in enabling real-time cooperative perception. 
    more » « less
    Free, publicly-accessible full text available June 9, 2026
  2. In network-constrained environments, distributed multi-agent systems—such as UGVs and UAVs—must communicate effectively to support computationally demanding scene perception tasks like semantic and instance segmentation. These tasks are challenging because they require high accuracy even when using low-quality images, and the network limitations restrict the amount of data that can be transmitted between agents. To overcome the above challenges, we propose TAVIC-DAS to perform a task and channel-aware variable-rate image compression to enable distributed task execution and minimize communication latency by transmitting compressed images. TAVIC-DAS proposes a novel image compression and decompression framework (distributed across agents) that integrates channel parameters such as RSSI and data rate into a task-specific "semantic segmentation" DNN to generate masks representing the object of interest in the scene (ROI maps) by determining a high pixel density needed to represent objects of interest and low density to represents surrounding pixels within an image. Additionally, to accommodate agents with limited computational resources, TAVIC-DAS incorporates resource-aware model quantization. We evaluated TAVIC-DAS on platforms such as ROSMaster X3 and Jetson Xavier, which communicated using a low-frequency proprietary Doodle radio operating at 915 MHz. The experimental results show that TAVIC-DAS achieves approximately 7.62% higher PSNR and is about 6.39% more resource efficient compared to state-of-the-art techniques. 
    more » « less
    Free, publicly-accessible full text available March 17, 2026